Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease.
نویسندگان
چکیده
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages dopaminergic neurons as seen in Parkinson's disease. Although increasing evidence suggests an involvement of glia in MPTP neurotoxicity, the nature of this involvement remains unclear. Exploiting the advantage of cell culture systems, we demonstrated that microglia, but not astroglia, significantly enhanced the progression of MPTP-induced dopaminergic neurodegeneration. Characterization of the temporal relationship between neurodegeneration and microglial activation demonstrates that reactive microgliosis resulting from MPTP-initiated neuronal injury, but not direct activation, underlies the microglia-enhanced MPTP neurotoxicity. Mechanistically, through the release of NADPH oxidase-derived reactive oxygen species, microglia contribute to the progressive neuronal damage. Among the factors measured, the production of extracellular superoxide was the most prominent. NADPH oxidase inhibitor, apocynin, attenuated MPTP-induced dopaminergic neurodegeneration only in the presence of glia. More importantly, dopaminergic neurons from mice lacking NADPH oxidase, a key enzyme for superoxide production in immune cells, are significantly more resistant to MPTP neurotoxicity than those from wild-type controls, and microglia dictate the resistance. This study demonstrates that reactive microgliosis triggered by MPTP-induced neuronal injury and NADPH oxidase-mediated superoxide production in microglia constitute an integral component of MPTP neurotoxicity. This study also suggests that NADPH oxidase may be a promising target for therapeutic interventions in Parkinson's disease.
منابع مشابه
Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation.
This study examined whether the cannabinoid receptor type 1 (CB(1)) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or ...
متن کاملBlockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease.
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages the nigrostriatal dopaminergic pathway as seen in Parkinson's disease (PD), a common neurodegenerative disorder with no effective protective treatment. Consistent with a role of glial cells in PD neurodegeneration, here we show that minocycline, an approved tetracycline derivative that inhibits microglial activation independently of it...
متن کاملEthyl pyruvate rescues nigrostriatal dopaminergic neurons by regulating glial activation in a mouse model of Parkinson's disease.
This study examined whether ethyl pyruvate (EP) promotes the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced degeneration of nigrostriatal DA neurons and glial activation as visualized by tyrosine hydroxylase, macrophage Ag complex-1, and/or glial fibrillary acidic protein immunoreact...
متن کاملThe effects of aqueous cinnamon bark extract and cinnamaldehyde on neurons of substantia nigra and behavioral impairment in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra. In recent years, there have been interests in the role of the free radical damage in PD. Cinnamon and its derivative, cinnamaldehyde acts as powerful antioxidant and anti-inflammatory agents. This research focused on the effects of cinnamon extract and cinnamald...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 17 13 شماره
صفحات -
تاریخ انتشار 2003